AutoGluon

3 行代码实现快速准确的机器学习

开始

快速原型设计

只需几行代码即可在原始数据上构建机器学习解决方案。

最先进的技术

无需专家知识即可自动利用最先进模型。

易于部署

利用云预测器和预构建容器,轻松从实验迁移到生产。

可定制

可通过自定义特征处理、模型和指标进行扩展。

快速示例

表格数据

预测数据表中的 class

from autogluon.tabular import TabularDataset, TabularPredictor

data_root = 'https://autogluon.s3.amazonaws.com/datasets/Inc/'
train_data = TabularDataset(data_root + 'train.csv')
test_data = TabularDataset(data_root + 'test.csv')

predictor = TabularPredictor(label='class').fit(train_data=train_data)
predictions = predictor.predict(test_data)
多模态
from autogluon.multimodal import MultiModalPredictor
from autogluon.core.utils.loaders import load_pd

data_root = 'https://autogluon-text.s3-accelerate.amazonaws.com/glue/sst/'
train_data = load_pd.load(data_root + 'train.parquet')
test_data = load_pd.load(data_root + 'dev.parquet')

predictor = MultiModalPredictor(label='label').fit(train_data=train_data)
predictions = predictor.predict(test_data)
from autogluon.multimodal import MultiModalPredictor
from autogluon.multimodal.utils.misc import shopee_dataset

train_data, test_data = shopee_dataset('./automm_shopee_data')

predictor = MultiModalPredictor(label='label').fit(train_data=train_data)
predictions = predictor.predict(test_data)
from autogluon.multimodal import MultiModalPredictor
from autogluon.core.utils.loaders import load_pd

data_root = 'https://automl-mm-bench.s3.amazonaws.com/ner/mit-movies/'
train_data = load_pd.load(data_root + 'train.csv')
test_data = load_pd.load(data_root + 'test.csv')

predictor = MultiModalPredictor(problem_type="ner", label="entity_annotations")

predictor.fit(train_data)
predictor.evaluate(test_data)

sentence = "Game of Thrones is an American fantasy drama television series created" +
           "by David Benioff"
prediction = predictor.predict({ 'text_snippet': [sentence]})
from autogluon.multimodal import MultiModalPredictor, utils
import ir_datasets
import pandas as pd

dataset = ir_datasets.load("beir/fiqa/dev")
docs_df = pd.DataFrame(dataset.docs_iter()).set_index("doc_id")

predictor = MultiModalPredictor(problem_type="text_similarity")

doc_embedding = predictor.extract_embedding(docs_df)
q_embedding = predictor.extract_embedding([
  "what happened when the dot com bubble burst?"
])

similarity = utils.compute_semantic_similarity(q_embedding, doc_embedding)
# Install mmcv-related dependencies
!mim install "mmcv==2.1.0"
!pip install "mmdet==3.2.0"

from autogluon.multimodal import MultiModalPredictor
from autogluon.core.utils.loaders import load_zip

data_zip = "https://automl-mm-bench.s3.amazonaws.com/object_detection_dataset/" + \
           "tiny_motorbike_coco.zip"
load_zip.unzip(data_zip, unzip_dir=".")

train_path = "./tiny_motorbike/Annotations/trainval_cocoformat.json"
test_path = "./tiny_motorbike/Annotations/test_cocoformat.json"

predictor = MultiModalPredictor(
  problem_type="object_detection",
  sample_data_path=train_path
)

predictor.fit(train_path)
score = predictor.evaluate(test_path)

pred = predictor.predict({"image": ["./tiny_motorbike/JPEGImages/000038.jpg"]})
时间序列

预测时间序列的未来值

from autogluon.timeseries import TimeSeriesDataFrame, TimeSeriesPredictor

data = TimeSeriesDataFrame('https://autogluon.s3.amazonaws.com/datasets/timeseries/m4_hourly/train.csv')

predictor = TimeSeriesPredictor(target='target', prediction_length=48).fit(data)
predictions = predictor.predict(data)

安装

使用 pip 安装 AutoGluon

pip install autogluon

AutoGluon 支持 Linux、MacOS 和 Windows。有关详细说明,请参阅 安装 AutoGluon

托管服务

正在寻找托管的 AutoML 服务?我们强烈推荐您了解 Amazon SageMaker Canvas!它由 AutoGluon 提供支持,让您无需任何机器学习经验或编写任何代码即可创建高度准确的机器学习模型。

社区

Discord Twitter

加入我们的 Discord,参与 AutoGluon 社区!

引用 AutoGluon

AutoGluon 最初由 AWS AI 的研究人员和工程师开发。如果您在研究中使用 AutoGluon,请参考我们的引用指南